Thread Local Heap Garbage Collection
in a Simulated Runtime Environment

Marcel Dombrowski, Konstantin Nasartschuk, Kenneth B. Kent Thread Local Heap GC

Outline

« We developed a simulator for automated memory management,
which allows prototyping of new Garbage Collection (GC) techniques.

 We implemented a Thread Local Heap (TLH) generational collector,
where each thread has its own heap.

» QOur prototype can easily be implemented in a Java Virtual Machine.

marcel.dombrowski@unb.ca, kons.na@unb.ca, ken@unb.ca

Motivation

University of New Brunswick

Faculty of Computer Science - Each thread has its own heap assigned to it, which it has to GC itself.

* An object escapes when it Is reachable by more than one thread.

 What happens when all references within the thread to an escaped
object are deleted?

 We need to be able to detect If this object Is still reachable from
another thread.

 ASs soon as an object escapes, the original thread and the thread to
which the object escapes to are put Into its own group.

» |f a GC occurs on a thread that Is part of a group, all threads within this
group are collected as well (worst case: all threads need to be
collected).

» If all local references of an escaped object are deleted, the object will
be collapsed (= moved) to a thread that still has a reference to it.

* |f no reference Is available the object can safely be deleted.

* The development of new GC techniques always has a huge
overhead as they need to be implemented in an existing system. Results*

 To overcome this overhead we developed a simulator which only

deals with automated memory management.

 This simulator I1s able to play back pre-recorded tracefiles, which
contain object allocations and reference changes.

e This makes our simulator deterministic and thus suitable for
comparison of different GC techniques.

 We Iimplemented our own version of a TLH generational collector
using this simulator.

Figure 1: Object 1c escaped by being reachable from Thread 2.

))
UNB

 We compared our results to a traditional generational collector using
an artificially created tracefile.

* This traceflle contained 5 threads. We allocated heap sizes between
350 and 450 kB for the traditional generational GC and heap sizes
between 80 and 100 kB for each thread for our TLH GC.

* On average 30-50% of the objects were escaped.

* We were able to successfully reduce the overall execution time. This Is
because smaller heaps take less time to GC and often GCs can be

done during execution (actual improvements can only be seen when

Thread 1 Thread 2 . .
our approach would be implemented in e.g. a JVM).
Metadata Metadata Overall Time
40 I I I I I
needsGC =0 needsGC=0 —€6— tlh 5x80kB, 10k, 20% (91 GCs)
—>&— tlh 5x90kB, 5k, 20% (101 GCs)
a5 L =€ tlh 5x90kB, 500, 20% (26 GCTS) | ... |
N RN f,,f"‘_“mx =2 tlh 5x100kB, 10k, 10% (138 GCs)
(e (ovaza) (oo) e e
N S~ KHE__TJ > 30 1 gen : : o () | A _
/ ¥ f;h' 2"“\. G
'Qi}hject lly Ject 2 /l —
W
e i |
£ 20
,#"'df_ -_H“'-ax =
Object 2d A
/ 15+
I
h 4
- + H\. 10 -
Object 1ty
Hﬂh"h-_____;-’

-
e
!
{
‘I
|

5,
.,

T,

0 ¥t
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

\ lterations

Garbage Collection J

/ Figure 2: The overall runtime of our new technique compared to a

traditional generational collector.

* Results unpublished at time of poster submission

|IBM Centre for Advanced Studies - Atlantic

FACULTY OF COMPUTER SCIENCE

